
docker-stacks Documentation
Release latest

Project Jupyter

09 jan. 2022

Guia de uso

1 Guia rápido 3

2 CPU Architectures 5
2.1 Caveats for arm64 images . 5

3 Índice 7
3.1 Selecting an Image . 7
3.2 Running a Container . 11
3.3 Common Features . 14
3.4 Image Specifics . 18
3.5 Contributed Recipes . 24
3.6 Project Issues . 35
3.7 Package Updates . 35
3.8 New Recipes . 36
3.9 Doc Translations . 36
3.10 Lint . 36
3.11 Image Tests . 38
3.12 New Features . 38
3.13 Community Stacks . 39
3.14 Maintainer Playbook . 47

i

ii

docker-stacks Documentation, Release latest

Jupyter Docker Stacks é um conjunto de imagens Docker prontas para uso contendo aplicações Jupyter e ferramentas
interativas. Você pode usar uma pilha de imagens para fazer qualquer uma dessas coisas (e muito mais):

• Rodar um servidor Jupyter Notebook em um container Docker local

• Rodar um servidor JupyterLab para uma equipe usando JupyterHub

• Escrever seu próprio Dockerfile

Guia de uso 1

docker-stacks Documentation, Release latest

2 Guia de uso

CAPÍTULO 1

Guia rápido

You can try a relatively recent build of the jupyter/base-notebook image on mybinder.org by simply clicking the prece-
ding link. Otherwise, three examples below may help you get started if you have Docker installed, know which Docker
image you want to use and want to launch a single Jupyter Notebook server in a container.

As próximas paginas desta documentação descrevem os usos e as funcionalidades adicionais com mais detalhes

Example 1: This command pulls the jupyter/scipy-notebook image tagged 33add21fab64 from Docker Hub if it
is not already present on the local host. It then starts a container running a Jupyter Notebook server and exposes the ser-
ver on host port 8888. The server logs appear in the terminal. Visiting http://<hostname>:8888/?token=<token>
in a browser loads the Jupyter Notebook dashboard page, where hostname is the name of the computer running docker
and token is the secret token printed in the console. The container remains intact for restart after the notebook server
exits.:

docker run -p 8888:8888 jupyter/scipy-notebook:33add21fab64

Example 2: This command performs the same operations as Example 1, but it exposes the server on host port 10000
instead of port 8888. Visiting http://<hostname>:10000/?token=<token> in a browser loads Jupyter Notebook
server, where hostname is the name of the computer running docker and token is the secret token printed in the
console.:

docker run -p 10000:8888 jupyter/scipy-notebook:33add21fab64

Example 3: This command pulls the jupyter/datascience-notebook image tagged 33add21fab64 from Docker
Hub if it is not already present on the local host. It then starts an ephemeral container running a Jupyter Notebook
server and exposes the server on host port 10000. The command mounts the current working directory on the host as
/home/jovyan/work in the container. The server logs appear in the terminal. Visiting http://<hostname>:10000/
lab?token=<token> in a browser loads JupyterLab, where hostname is the name of the computer running docker
and token is the secret token printed in the console. Docker destroys the container after notebook server exit, but any
files written to ~/work in the container remain intact on the host.:

docker run --rm -p 10000:8888 -e JUPYTER_ENABLE_LAB=yes -v "${PWD}":/home/jovyan/work␣
→˓jupyter/datascience-notebook:33add21fab64

3

https://mybinder.org/v2/gh/jupyter/docker-stacks/master?filepath=README.ipynb
https://docs.docker.com/install/

docker-stacks Documentation, Release latest

4 Capítulo 1. Guia rápido

CAPÍTULO 2

CPU Architectures

All published containers support amd64 (x86_64) and aarch64, except for datascience and tensorflow, which only
support amd64 for now.

2.1 Caveats for arm64 images

• The manifests we publish in this projects wiki as well as the image tags for the multi platform images that also
support arm, are all based on the amd64 version even though details about the installed packages versions could
differ between architectures. For the status about this, see #1401.

• Only the amd64 images are actively tested currently. For the status about this, see #1402.

5

https://github.com/jupyter/docker-stacks/issues/1401
https://github.com/jupyter/docker-stacks/issues/1402

docker-stacks Documentation, Release latest

6 Capítulo 2. CPU Architectures

CAPÍTULO 3

Índice

3.1 Selecting an Image

• Core Stacks

• Image Relationships

• Community Stacks

Using one of the Jupyter Docker Stacks requires two choices:

1. Which Docker image you wish to use

2. How you wish to start Docker containers from that image

This section provides details about the first.

3.1.1 Core Stacks

The Jupyter team maintains a set of Docker image definitions in the https://github.com/jupyter/docker-stacks GitHub
repository. The following sections describe these images including their contents, relationships, and versioning strategy.

jupyter/base-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/base-notebook is a small image supporting the options common across all core stacks. It is the basis for
all other stacks.

• Minimally-functional Jupyter Notebook server (e.g., no LaTeX support for saving notebooks as PDFs)

• Miniforge Python 3.x in /opt/conda with two package managers

– conda: “cross-platform, language-agnostic binary package manager”.

7

https://github.com/jupyter/docker-stacks
https://github.com/jupyter/docker-stacks/tree/master/base-notebook
https://github.com/jupyter/docker-stacks/commits/master/base-notebook/Dockerfile
https://hub.docker.com/r/jupyter/base-notebook/tags/
https://github.com/conda-forge/miniforge
https://github.com/conda/conda

docker-stacks Documentation, Release latest

– mamba: “reimplementation of the conda package manager in C++”. We use this package manager by
default when installing packages.

• notebook, jupyterhub and jupyterlab packages

• No preinstalled scientific computing packages

• Unprivileged user jovyan (uid=1000, configurable, see options) in group users (gid=100) with ownership
over the /home/jovyan and /opt/conda paths

• tini as the container entrypoint and a start-notebook.sh script as the default command

• A start-singleuser.sh script useful for launching containers in JupyterHub

• A start.sh script useful for running alternative commands in the container (e.g. ipython, jupyter
kernelgateway, jupyter lab)

• Options for a self-signed HTTPS certificate and passwordless sudo

jupyter/minimal-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/minimal-notebook adds command line tools useful when working in Jupyter applications.

• Everything in jupyter/base-notebook

• TeX Live for notebook document conversion

• git, vi (actually vim-tiny), nano (actually nano-tiny), tzdata, and unzip

jupyter/r-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/r-notebook includes popular packages from the R ecosystem.

• Everything in jupyter/minimal-notebook and its ancestor images

• The R interpreter and base environment

• IRKernel to support R code in Jupyter notebooks

• tidyverse packages from conda-forge

• caret, crayon, devtools, forecast, hexbin, htmltools, htmlwidgets, nycflights13, randomforest, rcurl, rmarkdown,
rodbc, rsqlite, shiny, tidymodels, unixodbc packages from conda-forge

jupyter/scipy-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/scipy-notebook includes popular packages from the scientific Python ecosystem.

• Everything in jupyter/minimal-notebook and its ancestor images

• altair, beautifulsoup4, bokeh, bottleneck, cloudpickle, conda-forge::blas=*=openblas, cython, dask, dill, h5py,
matplotlib-base, numba, numexpr, pandas, patsy, protobuf, pytables, scikit-image, scikit-learn, scipy, seaborn,
sqlalchemy, statsmodel, sympy, widgetsnbextension, xlrd packages

• ipympl and ipywidgets for interactive visualizations and plots in Python notebooks

• Facets for visualizing machine learning datasets

8 Capítulo 3. Índice

https://github.com/mamba-org/mamba
https://github.com/jupyter/docker-stacks/tree/master/minimal-notebook
https://github.com/jupyter/docker-stacks/commits/master/minimal-notebook/Dockerfile
https://hub.docker.com/r/jupyter/minimal-notebook/tags/
https://www.tug.org/texlive/
https://git-scm.com/
https://www.vim.org
https://www.nano-editor.org/
https://github.com/jupyter/docker-stacks/tree/master/r-notebook
https://github.com/jupyter/docker-stacks/commits/master/r-notebook/Dockerfile
https://hub.docker.com/r/jupyter/r-notebook/tags/
https://www.r-project.org/
https://irkernel.github.io/
https://www.tidyverse.org/
https://conda-forge.org/feedstock-outputs/index.html
https://topepo.github.io/caret/index.html
https://cran.r-project.org/web/packages/crayon/index.html
https://cran.r-project.org/web/packages/devtools/index.html
https://cran.r-project.org/web/packages/forecast/index.html
https://cran.r-project.org/web/packages/hexbin/index.html
https://cran.r-project.org/web/packages/htmltools/index.html
https://www.htmlwidgets.org
https://cran.r-project.org/web/packages/nycflights13/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://rmarkdown.rstudio.com
https://cran.r-project.org/web/packages/RODBC/index.html
https://cran.r-project.org/web/packages/RSQLite/index.html
https://shiny.rstudio.com/
https://www.tidymodels.org/
http://www.unixodbc.org
https://conda-forge.org/feedstock-outputs/index.html
https://github.com/jupyter/docker-stacks/tree/master/scipy-notebook
https://github.com/jupyter/docker-stacks/commits/master/scipy-notebook/Dockerfile
https://hub.docker.com/r/jupyter/scipy-notebook/tags/
https://altair-viz.github.io
https://www.crummy.com/software/BeautifulSoup/
https://docs.bokeh.org/en/latest/
https://bottleneck.readthedocs.io/en/latest/
https://github.com/cloudpipe/cloudpickle
https://www.openblas.net
https://cython.org
https://dask.org/
https://pypi.org/project/dill/
https://www.h5py.org
https://matplotlib.org/
https://numba.pydata.org/
https://github.com/pydata/numexpr
https://pandas.pydata.org/
https://patsy.readthedocs.io/en/latest/
https://developers.google.com/protocol-buffers/docs/pythontutorial
https://www.pytables.org/
https://scikit-image.org
https://scikit-learn.org/stable/
https://www.scipy.org/
https://seaborn.pydata.org/
https://www.sqlalchemy.org/
https://www.statsmodels.org/stable/index.html
https://www.sympy.org/en/index.html
https://ipywidgets.readthedocs.io/en/latest/user_install.html#installing-in-classic-jupyter-notebook
https://www.python-excel.org
https://github.com/matplotlib/ipympl
https://ipywidgets.readthedocs.io/en/stable/
https://github.com/PAIR-code/facets

docker-stacks Documentation, Release latest

jupyter/tensorflow-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/tensorflow-notebook includes popular Python deep learning libraries.

• Everything in jupyter/scipy-notebook and its ancestor images

• tensorflow machine learning library

jupyter/datascience-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/datascience-notebook includes libraries for data analysis from the Julia, Python, and R communities.

• Everything in the jupyter/scipy-notebook and jupyter/r-notebook images, and their ancestor images

• rpy2 package

• The Julia compiler and base environment

• IJulia to support Julia code in Jupyter notebooks

• HDF5, Gadfly, RDatasets packages

jupyter/pyspark-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/pyspark-notebook includes Python support for Apache Spark.

• Everything in jupyter/scipy-notebook and its ancestor images

• Apache Spark with Hadoop binaries

• pyarrow library

jupyter/all-spark-notebook

Source on GitHub | Dockerfile commit history | Docker Hub image tags

jupyter/all-spark-notebook includes Python, R, and Scala support for Apache Spark.

• Everything in jupyter/pyspark-notebook and its ancestor images

• IRKernel to support R code in Jupyter notebooks

• rcurl, sparklyr, ggplot2 packages

• spylon-kernel to support Scala code in Jupyter notebooks

3.1. Selecting an Image 9

https://github.com/jupyter/docker-stacks/tree/master/tensorflow-notebook
https://github.com/jupyter/docker-stacks/commits/master/tensorflow-notebook/Dockerfile
https://hub.docker.com/r/jupyter/tensorflow-notebook/tags/
https://www.tensorflow.org/
https://github.com/jupyter/docker-stacks/tree/master/datascience-notebook
https://github.com/jupyter/docker-stacks/commits/master/datascience-notebook/Dockerfile
https://hub.docker.com/r/jupyter/datascience-notebook/tags/
https://rpy2.github.io/doc/latest/html/index.html
https://julialang.org/
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaIO/HDF5.jl
https://gadflyjl.org/stable/
https://github.com/JuliaStats/RDatasets.jl
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/commits/master/pyspark-notebook/Dockerfile
https://hub.docker.com/r/jupyter/pyspark-notebook/tags/
https://spark.apache.org/
https://arrow.apache.org/docs/python/
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook
https://github.com/jupyter/docker-stacks/commits/master/all-spark-notebook/Dockerfile
https://hub.docker.com/r/jupyter/all-spark-notebook/tags/
https://irkernel.github.io/
https://cran.r-project.org/web/packages/RCurl/index.html
https://spark.rstudio.com
https://ggplot2.tidyverse.org
https://github.com/vericast/spylon-kernel

docker-stacks Documentation, Release latest

Image Relationships

The following diagram depicts the build dependency tree of the core images. (i.e., the FROM statements in their Doc-
kerfiles). Any given image inherits the complete content of all ancestor images pointing to it.

Builds

Every Monday and whenever a pull requests is merged, images are rebuilt and pushed to the public container registry.

Versioning via image tags

Whenever a docker image is pushed to the container registry, it is tagged with:

• a latest tag

• a 12-character git commit SHA like b9f6ce795cfc

• a date formatted like 2021-08-29

• a set of software version tags like python-3.9.6 and lab-3.0.16

For stability and reproducibility, you should either reference a date formatted tag from a date before the current date (in
UTC time) or a git commit SHA older than the latest git commit SHA in the default branch of the jupyter/docker-stacks
GitHub repository.

3.1.2 Community Stacks

The core stacks are just a tiny sample of what’s possible when combining Jupyter with other technologies. We encourage
members of the Jupyter community to create their own stacks based on the core images and link them below.

• csharp-notebook is a community Jupyter Docker Stack image. Try C# in Jupyter Notebooks. The image includes
more than 200 Jupyter Notebooks with example C# code and can readily be tried online via mybinder.org. Try
it on .

• education-notebook is a community Jupyter Docker Stack image. The image includes nbgrader and RISE on top
of the datascience-notebook image. Try it on .

• jamesdbrock/ihaskell-notebook

Source on GitHub | Dockerfile commit history | Github container registry

jamesdbrock/ihaskell-notebook is based on IHaskell. Includes popular packages and example notebooks.

Try it on

• java-notebook is a community Jupyter Docker Stack image. The image includes IJava kernel on top of the
minimal-notebook image. Try it on .

• sage-notebook is a community Jupyter Docker Stack image with the sagemath kernel on top of the minimal-
notebook image. Try it on .

• GPU-Jupyter: Leverage Jupyter Notebooks with the power of your NVIDIA GPU and perform GPU calculations
using Tensorflow and Pytorch in collaborative notebooks. This is done by generating a Dockerfile, that consists
of the nvidia/cuda base image, the well-maintained docker-stacks that is integrated as submodule and GPU-able
libraries like Tensorflow, Keras and PyTorch on top of it.

10 Capítulo 3. Índice

http://interactive.blockdiag.com/?compression=deflate&src=eJyFzTEPgjAQhuHdX9Gws5sQjGzujsaYKxzmQrlr2msMGv-71K0srO_3XGud9NNA8DSfgzESCFlBSdi0xkvQAKTNugw4QnL6GIU10hvX-Zh7Z24OLLq2SjaxpvP10lX35vCf6pOxELFmUbQiUz4oQhYzMc3gCrRt2cWe_FKosmSjyFHC6OS1AwdQWCtyj7sfh523_BI9hKlQ25YdOFdv5fcH0kiEMA
https://github.com/tlinnet/csharp-notebook
https://mybinder.org/v2/gh/tlinnet/csharp-notebook/master
https://github.com/umsi-mads/education-notebook
https://mybinder.org/v2/gh/umsi-mads/education-notebook/master
https://github.com/jamesdbrock/ihaskell-notebook
https://github.com/jamesdbrock/ihaskell-notebook/commits/master/Dockerfile
https://github.com/jamesdbrock/ihaskell-notebook/pkgs/container/ihaskell-notebook
https://github.com/gibiansky/IHaskell
https://mybinder.org/v2/gh/jamesdbrock/learn-you-a-haskell-notebook/master?urlpath=lab/tree/ihaskell_examples/ihaskell/IHaskell.ipynb
https://github.com/jbindinga/java-notebook
https://github.com/SpencerPark/IJava
https://mybinder.org/v2/gh/jbindinga/java-notebook/master
https://github.com/sharpTrick/sage-notebook
https://www.sagemath.org
https://mybinder.org/v2/gh/sharpTrick/sage-notebook/master
https://github.com/iot-salzburg/gpu-jupyter/

docker-stacks Documentation, Release latest

• PRP GPU Jupyter repo and Registry PRP (Pacific Research Platform) maintained registry for jupyter stack based
on NVIDIA CUDA-enabled image. Added the PRP image with Pytorch and some other python packages, and
GUI Desktop notebook based on https://github.com/jupyterhub/jupyter-remote-desktop-proxy.

• cgspatial-notebook is a community Jupyter Docker Stack image. The image includes major geospatial Python &
R libraries on top of the datascience-notebook image. Try it on

• kotlin-notebook is a community Jupyter Docker Stack image. The image includes Kotlin kernel for Jupy-
ter/IPython on top of the base-notebook image. Try it on

See the contributing guide for information about how to create your own Jupyter Docker Stack.

3.2 Running a Container

Using one of the Jupyter Docker Stacks requires two choices:

1. Which Docker image you wish to use

2. How you wish to start Docker containers from that image

This section provides details about the second.

3.2.1 Using the Docker CLI

You can launch a local Docker container from the Jupyter Docker Stacks using the Docker command line interface.
There are numerous ways to configure containers using the CLI. The following are some common patterns.

Example 1 This command pulls the jupyter/scipy-notebook image tagged 33add21fab64 from Docker Hub if
it is not already present on the local host. It then starts a container running a Jupyter Notebook server and exposes the
server on host port 8888. The server logs appear in the terminal and include a URL to the notebook server.

$ docker run -p 8888:8888 jupyter/scipy-notebook:33add21fab64

Executing the command: jupyter notebook
[I 15:33:00.567 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.
→˓local/share/jupyter/runtime/notebook_cookie_secret
[W 15:33:01.084 NotebookApp] WARNING: The notebook server is listening on all IP␣
→˓addresses and not using encryption. This is not recommended.
[I 15:33:01.150 NotebookApp] JupyterLab alpha preview extension loaded from /opt/conda/
→˓lib/python3.6/site-packages/jupyterlab
[I 15:33:01.150 NotebookApp] JupyterLab application directory is /opt/conda/share/
→˓jupyter/lab
[I 15:33:01.155 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 15:33:01.156 NotebookApp] 0 active kernels
[I 15:33:01.156 NotebookApp] The Jupyter Notebook is running at:
[I 15:33:01.157 NotebookApp] http://[all ip addresses on your system]:8888/?
→˓token=112bb073331f1460b73768c76dffb2f87ac1d4ca7870d46a
[I 15:33:01.157 NotebookApp] Use Control-C to stop this server and shut down all kernels␣
→˓(twice to skip confirmation).
[C 15:33:01.160 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://localhost:8888/?token=112bb073331f1460b73768c76dffb2f87ac1d4ca7870d46a

3.2. Running a Container 11

https://gitlab.nautilus.optiputer.net/prp/jupyter-stack/-/tree/prp
https://gitlab.nautilus.optiputer.net/prp/jupyter-stack/container_registry
https://github.com/jupyterhub/jupyter-remote-desktop-proxy
https://github.com/SCiO-systems/cgspatial-notebook
https://mybinder.org/v2/gh/SCiO-systems/cgspatial-notebook/master
https://github.com/knonm/kotlin-notebook
https://github.com/Kotlin/kotlin-jupyter
https://github.com/Kotlin/kotlin-jupyter
https://mybinder.org/v2/gh/knonm/kotlin-notebook/main
https://docs.docker.com/engine/reference/commandline/cli/

docker-stacks Documentation, Release latest

Pressing Ctrl-C shuts down the notebook server but leaves the container intact on disk for later restart or permanent
deletion using commands like the following:

list containers
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓ PORTS NAMES
d67fe77f1a84 jupyter/base-notebook "tini -- start-noteb..." 44 seconds ago ␣
→˓Exited (0) 39 seconds ago cocky_mirzakhani

start the stopped container
$ docker start -a d67fe77f1a84
Executing the command: jupyter notebook
[W 16:45:02.020 NotebookApp] WARNING: The notebook server is listening on all IP␣
→˓addresses and not using encryption. This is not recommended.
...

remove the stopped container
$ docker rm d67fe77f1a84
d67fe77f1a84

Example 2 This command pulls the jupyter/r-notebook image tagged 33add21fab64 from Docker Hub if it is not
already present on the local host. It then starts a container running a Jupyter Notebook server and exposes the server on
host port 10000. The server logs appear in the terminal and include a URL to the notebook server, but with the internal
container port (8888) instead of the the correct host port (10000).

$ docker run --rm -p 10000:8888 -v "${PWD}":/home/jovyan/work jupyter/r-
→˓notebook:33add21fab64

Executing the command: jupyter notebook
[I 19:31:09.573 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.
→˓local/share/jupyter/runtime/notebook_cookie_secret
[W 19:31:11.930 NotebookApp] WARNING: The notebook server is listening on all IP␣
→˓addresses and not using encryption. This is not recommended.
[I 19:31:12.085 NotebookApp] JupyterLab alpha preview extension loaded from /opt/conda/
→˓lib/python3.6/site-packages/jupyterlab
[I 19:31:12.086 NotebookApp] JupyterLab application directory is /opt/conda/share/
→˓jupyter/lab
[I 19:31:12.117 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 19:31:12.117 NotebookApp] 0 active kernels
[I 19:31:12.118 NotebookApp] The Jupyter Notebook is running at:
[I 19:31:12.119 NotebookApp] http://[all ip addresses on your system]:8888/?
→˓token=3b8dce890cb65570fb0d9c4a41ae067f7604873bd604f5ac
[I 19:31:12.120 NotebookApp] Use Control-C to stop this server and shut down all kernels␣
→˓(twice to skip confirmation).
[C 19:31:12.122 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://localhost:8888/?token=3b8dce890cb65570fb0d9c4a41ae067f7604873bd604f5ac

Pressing Ctrl-C shuts down the notebook server and immediately destroys the Docker container. Files written to
~/work in the container remain touched. Any other changes made in the container are lost.

Example 3 This command pulls the jupyter/all-spark-notebook image currently tagged latest from Docker

12 Capítulo 3. Índice

docker-stacks Documentation, Release latest

Hub if an image tagged latest is not already present on the local host. It then starts a container named notebook
running a JupyterLab server and exposes the server on a randomly selected port.

docker run -d -P --name notebook jupyter/all-spark-notebook

The assigned port and notebook server token are visible using other Docker commands.

get the random host port assigned to the container port 8888
$ docker port notebook 8888
0.0.0.0:32769

get the notebook token from the logs
$ docker logs --tail 3 notebook

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://localhost:8888/?token=15914ca95f495075c0aa7d0e060f1a78b6d94f70ea373b00

Together, the URL to visit on the host machine to access the server in this case is http://localhost:32769?token=
15914ca95f495075c0aa7d0e060f1a78b6d94f70ea373b00.

The container runs in the background until stopped and/or removed by additional Docker commands.

stop the container
docker stop notebook
notebook

remove the container permanently
docker rm notebook
notebook

3.2.2 Using Binder

Binder is a service that allows you to create and share custom computing environments for projects in version control.
You can use any of the Jupyter Docker Stacks images as a basis for a Binder-compatible Dockerfile. See the docker-
stacks example and Using a Dockerfile sections in the Binder documentation for instructions.

3.2. Running a Container 13

http://localhost:32769?token=15914ca95f495075c0aa7d0e060f1a78b6d94f70ea373b00
http://localhost:32769?token=15914ca95f495075c0aa7d0e060f1a78b6d94f70ea373b00
https://mybinder.org/
https://mybinder.readthedocs.io/en/latest/sample_repos.html#using-a-docker-image-from-the-jupyter-docker-stacks-repository
https://mybinder.readthedocs.io/en/latest/sample_repos.html#using-a-docker-image-from-the-jupyter-docker-stacks-repository
https://mybinder.readthedocs.io/en/latest/tutorials/dockerfile.html
https://mybinder.readthedocs.io/en/latest/index.html

docker-stacks Documentation, Release latest

3.2.3 Using JupyterHub

You can configure JupyterHub to launcher Docker containers from the Jupyter Docker Stacks images. If you’ve been
following the Zero to JupyterHub with Kubernetes guide, see the Use an existing Docker image section for details. If you
have a custom JupyterHub deployment, see the Picking or building a Docker image instructions for the dockerspawner
instead.

3.2.4 Using Other Tools and Services

You can use the Jupyter Docker Stacks with any Docker-compatible technology (e.g., Docker Compose, docker-py,
your favorite cloud container service). See the documentation of the tool, library, or service for details about how to
reference, configure, and launch containers from these images.

3.3 Common Features

A container launched from any Jupyter Docker Stacks image runs a Jupyter Notebook server by default. The container
does so by executing a start-notebook.sh script. This script configures the internal container environment and then
runs jupyter notebook, passing it any command line arguments received.

This page describes the options supported by the startup script as well as how to bypass it to run alternative commands.

3.3.1 Notebook Options

You can pass Jupyter command line options to the start-notebook.sh script when launching the container. For
example, to secure the Notebook server with a custom password hashed using IPython.lib.passwd() instead of the
default token, you can run the following:

docker run -d -p 8888:8888 jupyter/base-notebook start-notebook.sh --NotebookApp.
→˓password='sha1:74ba40f8a388:c913541b7ee99d15d5ed31d4226bf7838f83a50e'

For example, to set the base URL of the notebook server, you can run the following:

docker run -d -p 8888:8888 jupyter/base-notebook start-notebook.sh --NotebookApp.base_
→˓url=/some/path

3.3.2 Docker Options

You may instruct the start-notebook.sh script to customize the container environment before launching the note-
book server. You do so by passing arguments to the docker run command.

• -e NB_USER=jovyan - Instructs the startup script to change the default container username from jovyan to
the provided value. Causes the script to rename the jovyan user home folder. For this option to take effect,
you must run the container with --user root, set the working directory -w /home/${NB_USER} and set the
environment variable -e CHOWN_HOME=yes (see below for detail). This feature is useful when mounting host
volumes with specific home folder.

• -e NB_UID=1000 - Instructs the startup script to switch the numeric user ID of ${NB_USER} to the given value.
This feature is useful when mounting host volumes with specific owner permissions. For this option to take
effect, you must run the container with --user root. (The startup script will su ${NB_USER} after adjusting
the user ID.) You might consider using modern Docker options --user and --group-add instead. See the last
bullet below for details.

14 Capítulo 3. Índice

https://zero-to-jupyterhub.readthedocs.io/en/latest/
https://zero-to-jupyterhub.readthedocs.io/en/latest/jupyterhub/customizing/user-environment.html#choose-and-use-an-existing-docker-image
https://github.com/jupyterhub/dockerspawner#picking-or-building-a-docker-image
https://github.com/jupyterhub/dockerspawner
https://docs.docker.com/compose/
https://github.com/docker/docker-py
https://jupyter-notebook.readthedocs.io/en/stable/config.html#options

docker-stacks Documentation, Release latest

• -e NB_GID=100 - Instructs the startup script to change the primary group of${NB_USER} to ${NB_GID} (the
new group is added with a name of ${NB_GROUP} if it is defined, otherwise the group is named ${NB_USER}).
This feature is useful when mounting host volumes with specific group permissions. For this option to take
effect, you must run the container with --user root. (The startup script will su ${NB_USER} after adjusting
the group ID.) You might consider using modern Docker options --user and --group-add instead. See the
last bullet below for details. The user is added to supplemental group users (gid 100) in order to allow write
access to the home directory and /opt/conda. If you override the user/group logic, ensure the user stays in
group users if you want them to be able to modify files in the image.

• -e NB_GROUP=<name> - The name used for ${NB_GID}, which defaults to ${NB_USER}. This is only used if
${NB_GID} is specified and completely optional: there is only cosmetic effect.

• -e NB_UMASK=<umask> - Configures Jupyter to use a different umask value from default, i.e. 022. For example,
if setting umask to 002, new files will be readable and writable by group members instead of just writable by the
owner. Wikipedia has a good article about umask. Feel free to read it in order to choose the value that better fits
your needs. Default value should fit most situations. Note that NB_UMASK when set only applies to the Jupyter
process itself - you cannot use it to set a umask for additional files created during run-hooks e.g. via pip or
conda - if you need to set a umask for these you must set umask for each command.

• -e CHOWN_HOME=yes - Instructs the startup script to change the ${NB_USER} home directory owner and group
to the current value of ${NB_UID} and ${NB_GID}. This change will take effect even if the user home directory
is mounted from the host using -v as described below. The change is not applied recursively by default. You
can change modify the chown behavior by setting CHOWN_HOME_OPTS (e.g., -e CHOWN_HOME_OPTS='-R').

• -e CHOWN_EXTRA="<some dir>,<some other dir>" - Instructs the startup script to change the owner
and group of each comma-separated container directory to the current value of ${NB_UID} and ${NB_GID}.
The change is not applied recursively by default. You can change modify the chown behavior by setting
CHOWN_EXTRA_OPTS (e.g., -e CHOWN_EXTRA_OPTS='-R').

• -e GRANT_SUDO=yes - Instructs the startup script to grant the NB_USER user passwordless sudo capability. You
do not need this option to allow the user to conda or pip install additional packages. This option is useful,
however, when you wish to give ${NB_USER} the ability to install OS packages with apt or modify other root-
owned files in the container. For this option to take effect, you must run the container with --user root. (The
start-notebook.sh script will su ${NB_USER} after adding ${NB_USER} to sudoers.) You should only
enable sudo if you trust the user or if the container is running on an isolated host.

• -e GEN_CERT=yes - Instructs the startup script to generates a self-signed SSL certificate and configure Jupyter
Notebook to use it to accept encrypted HTTPS connections.

• -e JUPYTER_ENABLE_LAB=yes - Instructs the startup script to run jupyter lab instead of the default
jupyter notebook command. Useful in container orchestration environments where setting environment va-
riables is easier than change command line parameters.

• -e RESTARTABLE=yes - Runs Jupyter in a loop so that quitting Jupyter does not cause the container to exit. This
may be useful when you need to install extensions that require restarting Jupyter.

• -v /some/host/folder/for/work:/home/jovyan/work - Mounts a host machine directory as folder in the
container. Useful when you want to preserve notebooks and other work even after the container is destroyed.
You must grant the within-container notebook user or group (NB_UID or NB_GID) write access to the host
directory (e.g., sudo chown 1000 /some/host/folder/for/work).

• --user 5000 --group-add users - Launches the container with a specific user ID and adds that user to
the users group so that it can modify files in the default home directory and /opt/conda. You can use these
arguments as alternatives to setting ${NB_UID} and ${NB_GID}.

• -e JUPYTER_ENV_VARS_TO_UNSET=ADMIN_SECRET_1,ADMIN_SECRET_2 - Unsets specified environment va-
riables in the default startup script. The variables are unset after the hooks have executed but before the command
provided to the startup script runs.

3.3. Common Features 15

https://en.wikipedia.org/wiki/Umask

docker-stacks Documentation, Release latest

• -e NOTEBOOK_ARGS="--log-level='DEBUG' --dev-mode" - Adds custom options to launch jupyter lab
or jupyter notebook. This way any option, supported by jupyter could be used by the user.

3.3.3 Startup Hooks

You can further customize the container environment by adding shell scripts (*.sh) to be sourced or executables (chmod
+x) to be run to the paths below:

• /usr/local/bin/start-notebook.d/ - handled before any of the standard options noted above are applied

• /usr/local/bin/before-notebook.d/ - handled after all of the standard options noted above are applied
and just before the notebook server launches

See the run-hooks function in the jupyter/base-notebook start.sh script for execution details.

3.3.4 SSL Certificates

You may mount SSL key and certificate files into a container and configure Jupyter Notebook to use them to accept
HTTPS connections. For example, to mount a host folder containing a notebook.key and notebook.crt and use
them, you might run the following:

docker run -d -p 8888:8888 \
-v /some/host/folder:/etc/ssl/notebook \
jupyter/base-notebook start-notebook.sh \
--NotebookApp.keyfile=/etc/ssl/notebook/notebook.key
--NotebookApp.certfile=/etc/ssl/notebook/notebook.crt

Alternatively, you may mount a single PEM file containing both the key and certificate. For example:

docker run -d -p 8888:8888 \
-v /some/host/folder/notebook.pem:/etc/ssl/notebook.pem \
jupyter/base-notebook start-notebook.sh \
--NotebookApp.certfile=/etc/ssl/notebook.pem

In either case, Jupyter Notebook expects the key and certificate to be a base64 encoded text file. The certificate file or
PEM may contain one or more certificates (e.g., server, intermediate, and root).

For additional information about using SSL, see the following:

• The docker-stacks/examples for information about how to use Let’s Encrypt certificates when you run these stacks
on a publicly visible domain.

• The jupyter_notebook_config.py file for how this Docker image generates a self-signed certificate.

• The Jupyter Notebook documentation for best practices about securing a public notebook server in general.

16 Capítulo 3. Índice

https://github.com/jupyter/docker-stacks/blob/master/base-notebook/start.sh
https://github.com/jupyter/docker-stacks/tree/master/examples
https://letsencrypt.org/
https://github.com/jupyter/docker-stacks/blob/master/base-notebook/jupyter_notebook_config.py
https://jupyter-notebook.readthedocs.io/en/latest/public_server.html#securing-a-notebook-server

docker-stacks Documentation, Release latest

3.3.5 Alternative Commands

start.sh

The start-notebook.sh script actually inherits most of its option handling capability from a more generic start.
sh script. The start.sh script supports all of the features described above, but allows you to specify an arbitrary
command to execute. For example, to run the text-based ipython console in a container, do the following:

docker run -it --rm jupyter/base-notebook start.sh ipython

Or, to run JupyterLab instead of the classic notebook, run the following:

docker run -it --rm -p 8888:8888 jupyter/base-notebook start.sh jupyter lab

This script is particularly useful when you derive a new Dockerfile from this image and install additional Jupyter
applications with subcommands like jupyter console, jupyter kernelgateway, etc.

Others

You can bypass the provided scripts and specify an arbitrary start command. If you do, keep in mind that features
supported by the start.sh script and its kin will not function (e.g., GRANT_SUDO).

3.3.6 Conda Environments

The default Python 3.x Conda environment resides in /opt/conda. The /opt/conda/bin directory is part of the
default jovyan user’s ${PATH}. That directory is also whitelisted for use in sudo commands by the start.sh script.

The jovyan user has full read/write access to the /opt/conda directory. You can use either pip, conda or mamba to
install new packages without any additional permissions.

install a package into the default (python 3.x) environment and cleanup after the␣
→˓installation
mamba install --quiet --yes some-package && \

mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

pip install --quiet --no-cache-dir some-package && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

conda install --quiet --yes some-package && \
conda clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

3.3. Common Features 17

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

docker-stacks Documentation, Release latest

Using alternative channels

Conda is configured by default to use only the conda-forge channel. However, alternative channels can be used
either one shot by overwriting the default channel in the installation command or by configuring mamba to use different
channels. The examples below show how to use the anaconda default channels instead of conda-forge to install
packages.

using defaults channels to install a package
mamba install --channel defaults humanize
configure conda to add default channels at the top of the list
conda config --system --prepend channels defaults
install a package
mamba install --quiet --yes humanize && \

mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

3.4 Image Specifics

This page provides details about features specific to one or more images.

3.4.1 Apache Spark™

Specific Docker Image Options

• -p 4040:4040 - The jupyter/pyspark-notebook and jupyter/all-spark-notebook images open Spar-
kUI (Spark Monitoring and Instrumentation UI) at default port 4040, this option map 4040 port inside docker
container to 4040 port on host machine. Note every new spark context that is created is put onto an incrementing
port (ie. 4040, 4041, 4042, etc.), and it might be necessary to open multiple ports. For example: docker run
-d -p 8888:8888 -p 4040:4040 -p 4041:4041 jupyter/pyspark-notebook.

IPython low-level output capture and forward

Spark images (pyspark-notebook and all-spark-notebook) have been configured to disable IPython low-level
output capture and forward system-wide. The rationale behind this choice is that Spark logs can be verbose, especially
at startup when Ivy is used to load additional jars. Those logs are still available but only in the container’s logs.

If you want to make them appear in the notebook, you can overwrite the configuration in a user level IPython
kernel profile. To do that you have to uncomment the following line in your ~/.ipython/profile_default/
ipython_kernel_config.py and restart the kernel.

c.IPKernelApp.capture_fd_output = True

If you have no IPython profile you can initiate a fresh one by running the following command.

ipython profile create
[ProfileCreate] Generating default config file: '/home/jovyan/.ipython/profile_default/
→˓ipython_config.py'
[ProfileCreate] Generating default config file: '/home/jovyan/.ipython/profile_default/
→˓ipython_kernel_config.py'

18 Capítulo 3. Índice

https://anaconda.org/conda-forge
https://repo.anaconda.com/pkgs/main
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/monitoring.html

docker-stacks Documentation, Release latest

Build an Image with a Different Version of Spark

You can build a pyspark-notebook image (and also the downstream all-spark-notebook image) with a different
version of Spark by overriding the default value of the following arguments at build time.

• Spark distribution is defined by the combination of the Spark and the Hadoop version and verified by the package
checksum, see Download Apache Spark and the archive repo for more information.

– spark_version: The Spark version to install (3.0.0).

– hadoop_version: The Hadoop version (3.2).

– spark_checksum: The package checksum (BFE4540...).

• Spark can run with different OpenJDK versions.

– openjdk_version: The version of (JRE headless) the OpenJDK distribution (11), see Ubuntu packages.

For example here is how to build a pyspark-notebook image with Spark 2.4.7, Hadoop 2.7 and OpenJDK 8.

From the root of the project
Build the image with different arguments
docker build --rm --force-rm \

-t jupyter/pyspark-notebook:spark-2.4.7 ./pyspark-notebook \
--build-arg spark_version=2.4.7 \
--build-arg hadoop_version=2.7 \
--build-arg spark_

→˓checksum=0F5455672045F6110B030CE343C049855B7BA86C0ECB5E39A075FF9D093C7F648DA55DED12E72FFE65D84C32DCD5418A6D764F2D6295A3F894A4286CC80EF478␣
→˓\

--build-arg openjdk_version=8

Check the newly built image
docker run -it --rm jupyter/pyspark-notebook:spark-2.4.7 pyspark --version

Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/_,_/_/ /_/_\ version 2.4.7
/_/
#
Using Scala version 2.11.12, OpenJDK 64-Bit Server VM, 1.8.0_275

3.4. Image Specifics 19

https://spark.apache.org/downloads.html
https://archive.apache.org/dist/spark/
https://packages.ubuntu.com/search?keywords=openjdk

docker-stacks Documentation, Release latest

Usage Examples

The jupyter/pyspark-notebook and jupyter/all-spark-notebook images support the use of Apache Spark in
Python, R, and Scala notebooks. The following sections provide some examples of how to get started using them.

Using Spark Local Mode

Spark local mode is useful for experimentation on small data when you do not have a Spark cluster available.

Local Mode in Python

In a Python notebook.

from pyspark.sql import SparkSession

Spark session & context
spark = SparkSession.builder.master('local').getOrCreate()
sc = spark.sparkContext

Sum of the first 100 whole numbers
rdd = sc.parallelize(range(100 + 1))
rdd.sum()
5050

Local Mode in R

In a R notebook with SparkR.

library(SparkR)

Spark session & context
sc <- sparkR.session("local")

Sum of the first 100 whole numbers
sdf <- createDataFrame(list(1:100))
dapplyCollect(sdf,

function(x)
{ x <- sum(x)}
)

5050

In a R notebook with sparklyr.

library(sparklyr)

Spark configuration
conf <- spark_config()
Set the catalog implementation in-memory
conf$spark.sql.catalogImplementation <- "in-memory"

(continua na próxima página)

20 Capítulo 3. Índice

https://spark.apache.org/
https://spark.apache.org/docs/latest/sparkr.html
https://spark.rstudio.com/

docker-stacks Documentation, Release latest

(continuação da página anterior)

Spark session & context
sc <- spark_connect(master = "local", config = conf)

Sum of the first 100 whole numbers
sdf_len(sc, 100, repartition = 1) %>%

spark_apply(function(e) sum(e))
5050

Local Mode in Scala

Spylon kernel instantiates a SparkContext for you in variable sc after you configure Spark options in a %%init_spark
magic cell.

%%init_spark
Configure Spark to use a local master
launcher.master = "local"

// Sum of the first 100 whole numbers
val rdd = sc.parallelize(0 to 100)
rdd.sum()
// 5050

Connecting to a Spark Cluster in Standalone Mode

Connection to Spark Cluster on Standalone Mode requires the following set of steps:

1. Verify that the docker image (check the Dockerfile) and the Spark Cluster which is being deployed, run the same
version of Spark.

2. Deploy Spark in Standalone Mode.

3. Run the Docker container with --net=host in a location that is network addressable by all of your Spark workers.
(This is a Spark networking requirement.)

• NOTE: When using --net=host, you must also use the flags --pid=host -e TINI_SUBREAPER=true.
See https://github.com/jupyter/docker-stacks/issues/64 for details.

Note: In the following examples we are using the Spark master URL spark://master:7077 that shall be replaced
by the URL of the Spark master.

Standalone Mode in Python

The same Python version needs to be used on the notebook (where the driver is located) and on the Spark workers. The
python version used at driver and worker side can be adjusted by setting the environment variables PYSPARK_PYTHON
and / or PYSPARK_DRIVER_PYTHON, see Spark Configuration for more information.

from pyspark.sql import SparkSession

Spark session & context
spark = SparkSession.builder.master('spark://master:7077').getOrCreate()

(continua na próxima página)

3.4. Image Specifics 21

https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/cluster-overview.html#components
https://github.com/jupyter/docker-stacks/issues/64
https://spark.apache.org/docs/latest/configuration.html

docker-stacks Documentation, Release latest

(continuação da página anterior)

sc = spark.sparkContext

Sum of the first 100 whole numbers
rdd = sc.parallelize(range(100 + 1))
rdd.sum()
5050

Standalone Mode in R

In a R notebook with SparkR.

library(SparkR)

Spark session & context
sc <- sparkR.session("spark://master:7077")

Sum of the first 100 whole numbers
sdf <- createDataFrame(list(1:100))
dapplyCollect(sdf,

function(x)
{ x <- sum(x)}
)

5050

In a R notebook with sparklyr.

library(sparklyr)

Spark session & context
Spark configuration
conf <- spark_config()
Set the catalog implementation in-memory
conf$spark.sql.catalogImplementation <- "in-memory"
sc <- spark_connect(master = "spark://master:7077", config = conf)

Sum of the first 100 whole numbers
sdf_len(sc, 100, repartition = 1) %>%

spark_apply(function(e) sum(e))
5050

Standalone Mode in Scala

Spylon kernel instantiates a SparkContext for you in variable sc after you configure Spark options in a %%init_spark
magic cell.

%%init_spark
Configure Spark to use a local master
launcher.master = "spark://master:7077"

22 Capítulo 3. Índice

https://spark.apache.org/docs/latest/sparkr.html
https://spark.rstudio.com/

docker-stacks Documentation, Release latest

// Sum of the first 100 whole numbers
val rdd = sc.parallelize(0 to 100)
rdd.sum()
// 5050

Define Spark Dependencies

Spark dependencies can be declared thanks to the spark.jars.packages property (see Spark Configuration for more
information).

They can be defined as a comma-separated list of Maven coordinates at the creation of the Spark session.

from pyspark.sql import SparkSession

spark = (
SparkSession.builder.appName("elasticsearch")
.config(

"spark.jars.packages",
"org.elasticsearch:elasticsearch-spark-30_2.12:7.13.0"

)
.getOrCreate()

)

Dependencies can also be defined in the spark-defaults.conf. However, it has to be done by root so it should
only be considered to build custom images.

USER root
RUN echo "spark.jars.packages org.elasticsearch:elasticsearch-spark-30_2.12:7.13.0" >> "$
→˓{SPARK_HOME}/conf/spark-defaults.conf"
USER ${NB_UID}

Jars will be downloaded dynamically at the creation of the Spark session and stored by default in ${HOME}/.ivy2/
jars (can be changed by setting spark.jars.ivy).

Note: This example is given for Elasticsearch.

3.4.2 Tensorflow

The jupyter/tensorflow-notebook image supports the use of Tensorflow in single machine or distributed mode.

Single Machine Mode

import tensorflow as tf

hello = tf.Variable('Hello World!')

sess = tf.Session()
init = tf.global_variables_initializer()

sess.run(init)
sess.run(hello)

3.4. Image Specifics 23

https://spark.apache.org/docs/latest/configuration.html#runtime-environment
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/install.html
https://www.tensorflow.org/

docker-stacks Documentation, Release latest

Distributed Mode

import tensorflow as tf

hello = tf.Variable('Hello Distributed World!')

server = tf.train.Server.create_local_server()
sess = tf.Session(server.target)
init = tf.global_variables_initializer()

sess.run(init)
sess.run(hello)

3.5 Contributed Recipes

Users sometimes share interesting ways of using the Jupyter Docker Stacks. We encourage users to contribute these
recipes to the documentation in case they prove useful to other members of the community by submitting a pull request
to docs/using/recipes.md. The sections below capture this knowledge.

3.5.1 Using sudo within a container

Password authentication is disabled for the NB_USER (e.g., jovyan). This choice was made to avoid distributing images
with a weak default password that users ~might~ will forget to change before running a container on a publicly accessible
host.

You can grant the within-container NB_USER passwordless sudo access by adding -e GRANT_SUDO=yes and --user
root to your Docker command line or appropriate container orchestrator config.

For example:

docker run -it -e GRANT_SUDO=yes --user root jupyter/minimal-notebook

You should only enable sudo if you trust the user and/or if the container is running on an isolated host. See
Docker security documentation for more information about running containers as root.

3.5.2 Using mamba install or pip install in a Child Docker image

Create a new Dockerfile like the one shown below.

Start from a core stack version
FROM jupyter/datascience-notebook:33add21fab64
Install in the default python3 environment
RUN pip install --quiet --no-cache-dir 'flake8==3.9.2' && \

fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Then build a new image.

docker build --rm -t jupyter/my-datascience-notebook .

24 Capítulo 3. Índice

https://docs.docker.com/engine/security/userns-remap/

docker-stacks Documentation, Release latest

To use a requirements.txt file, first create your requirements.txt file with the listing of packages desired. Next,
create a new Dockerfile like the one shown below.

Start from a core stack version
FROM jupyter/datascience-notebook:33add21fab64
Install from requirements.txt file
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
RUN pip install --quiet --no-cache-dir --requirement /tmp/requirements.txt && \

fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

For conda, the Dockerfile is similar:

Start from a core stack version
FROM jupyter/datascience-notebook:33add21fab64
Install from requirements.txt file
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
RUN mamba install --yes --file /tmp/requirements.txt && \

mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Ref: docker-stacks/commit/79169618d571506304934a7b29039085e77db78c

3.5.3 Add a Python 2.x environment

Python 2.x was removed from all images on August 10th, 2017, starting in tag cc9feab481f7. You can add a Python
2.x environment by defining your own Dockerfile inheriting from one of the images like so:

Choose your desired base image
FROM jupyter/scipy-notebook:latest

Create a Python 2.x environment using conda including at least the ipython kernel
and the kernda utility. Add any additional packages you want available for use
in a Python 2 notebook to the first line here (e.g., pandas, matplotlib, etc.)
RUN mamba create --quiet --yes -p "${CONDA_DIR}/envs/python2" python=2.7 ipython␣
→˓ipykernel kernda && \

mamba clean --all -f -y

USER root

Create a global kernelspec in the image and modify it so that it properly activates
the python2 conda environment.
RUN "${CONDA_DIR}/envs/python2/bin/python" -m ipykernel install && \

"${CONDA_DIR}/envs/python2/bin/kernda" -o -y /usr/local/share/jupyter/kernels/
→˓python2/kernel.json

USER ${NB_UID}

Ref: https://github.com/jupyter/docker-stacks/issues/440

3.5. Contributed Recipes 25

https://github.com/jupyter/docker-stacks/commit/79169618d571506304934a7b29039085e77db78c#commitcomment-15960081
https://github.com/jupyter/docker-stacks/issues/440

docker-stacks Documentation, Release latest

3.5.4 Add a Python 3.x environment

The default version of Python that ships with conda/ubuntu may not be the version you want. To add a conda environ-
ment with a different version and make it accessible to Jupyter, the instructions are very similar to Python 2.x but are
slightly simpler (no need to switch to root):

Choose your desired base image
FROM jupyter/minimal-notebook:latest

name your environment and choose python 3.x version
ARG conda_env=python36
ARG py_ver=3.6

you can add additional libraries you want mamba to install by listing them below the␣
→˓first line and ending with "&& \"
RUN mamba create --quiet --yes -p "${CONDA_DIR}/envs/${conda_env}" python=${py_ver}␣
→˓ipython ipykernel && \

mamba clean --all -f -y

alternatively, you can comment out the lines above and uncomment those below
if you'd prefer to use a YAML file present in the docker build context

COPY --chown=${NB_UID}:${NB_GID} environment.yml "/home/${NB_USER}/tmp/"
RUN cd "/home/${NB_USER}/tmp/" && \
mamba env create -p "${CONDA_DIR}/envs/${conda_env}" -f environment.yml && \
mamba clean --all -f -y

create Python 3.x environment and link it to jupyter
RUN "${CONDA_DIR}/envs/${conda_env}/bin/python" -m ipykernel install --user --name="$
→˓{conda_env}" && \

fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

any additional pip installs can be added by uncommenting the following line
RUN "${CONDA_DIR}/envs/${conda_env}/bin/pip" install

prepend conda environment to path
ENV PATH "${CONDA_DIR}/envs/${conda_env}/bin:${PATH}"

if you want this environment to be the default one, uncomment the following line:
ENV CONDA_DEFAULT_ENV ${conda_env}

3.5.5 Run JupyterLab

JupyterLab is preinstalled as a notebook extension starting in tag c33a7dc0eece.

Run jupyterlab using a command such as docker run -it --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes
jupyter/datascience-notebook

26 Capítulo 3. Índice

https://github.com/jupyter/docker-stacks/pull/355

docker-stacks Documentation, Release latest

3.5.6 Dask JupyterLab Extension

Dask JupyterLab Extension provides a JupyterLab extension to manage Dask clusters, as well as embed Dask’s dash-
board plots directly into JupyterLab panes. Create the Dockerfile as:

Start from a core stack version
FROM jupyter/scipy-notebook:latest

Install the Dask dashboard
RUN pip install --quiet --no-cache-dir dask-labextension && \

fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Dask Scheduler & Bokeh ports
EXPOSE 8787
EXPOSE 8786

ENTRYPOINT ["jupyter", "lab", "--ip=0.0.0.0", "--allow-root"]

And build the image as:

docker build -t jupyter/scipy-dasklabextension:latest .

Once built, run using the command:

docker run -it --rm -p 8888:8888 -p 8787:8787 jupyter/scipy-dasklabextension:latest

Ref: https://github.com/jupyter/docker-stacks/issues/999

3.5.7 Let’s Encrypt a Notebook server

See the README for the simple automation here https://github.com/jupyter/docker-stacks/tree/master/examples/
make-deploy which includes steps for requesting and renewing a Let’s Encrypt certificate.

Ref: https://github.com/jupyter/docker-stacks/issues/78

3.5.8 Slideshows with Jupyter and RISE

RISE allows via extension to create live slideshows of your notebooks, with no conversion, adding javascript Reveal.js:

Add Live slideshows with RISE
RUN mamba install --quiet --yes -c damianavila82 rise && \

mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Credit: Paolo D. based on docker-stacks/issues/43

3.5. Contributed Recipes 27

https://github.com/dask/dask-labextension
https://github.com/jupyter/docker-stacks/issues/999
https://github.com/jupyter/docker-stacks/tree/master/examples/make-deploy
https://github.com/jupyter/docker-stacks/tree/master/examples/make-deploy
https://github.com/jupyter/docker-stacks/issues/78
https://github.com/damianavila/RISE
https://github.com/pdonorio
https://github.com/jupyter/docker-stacks/issues/43

docker-stacks Documentation, Release latest

3.5.9 xgboost

You need to install conda-forge’s gcc for Python xgboost to work properly. Otherwise, you’ll get an exception about
libgomp.so.1 missing GOMP_4.0.

mamba install --quiet --yes gcc && \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

pip install --quiet --no-cache-dir xgboost && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

run "import xgboost" in python

3.5.10 Running behind a nginx proxy

Sometimes it is useful to run the Jupyter instance behind a nginx proxy, for instance:

• you would prefer to access the notebook at a server URL with a path (https://example.com/jupyter) rather
than a port (https://example.com:8888)

• you may have many different services in addition to Jupyter running on the same server, and want to nginx to
help improve server performance in manage the connections

Here is a quick example NGINX configuration to get started. You’ll need a server, a .crt and .key file for your server,
and docker & docker-compose installed. Then just download the files at that gist and run docker-compose up -d
to test it out. Customize the nginx.conf file to set the desired paths and add other services.

3.5.11 Host volume mounts and notebook errors

If you are mounting a host directory as /home/jovyan/work in your container and you receive permission errors or
connection errors when you create a notebook, be sure that the jovyan user (UID=1000 by default) has read/write
access to the directory on the host. Alternatively, specify the UID of the jovyan user on container startup using the -e
NB_UID option described in the Common Features, Docker Options section

Ref: https://github.com/jupyter/docker-stacks/issues/199

3.5.12 Manpage installation

Most containers, including our Ubuntu base image, ship without manpages installed to save space. You can use the
following dockerfile to inherit from one of our images to enable manpages:

Choose your desired base image
ARG BASE_CONTAINER=jupyter/datascience-notebook:latest
FROM $BASE_CONTAINER

USER root

`/etc/dpkg/dpkg.cfg.d/excludes` contains several `path-exclude`s, including man pages
Remove it, then install man, install docs

(continua na próxima página)

28 Capítulo 3. Índice

https://gist.github.com/cboettig/8643341bd3c93b62b5c2
../using/common.html#Docker-Options
https://github.com/jupyter/docker-stacks/issues/199

docker-stacks Documentation, Release latest

(continuação da página anterior)

RUN rm /etc/dpkg/dpkg.cfg.d/excludes && \
apt-get update --yes && \
dpkg -l | grep ^ii | cut -d' ' -f3 | xargs apt-get install --yes --no-install-

→˓recommends --reinstall man && \
apt-get clean && rm -rf /var/lib/apt/lists/*

USER ${NB_UID}

Adding the documentation on top of an existing singleuser image wastes a lot of space and requires reinstalling every
system package, which can take additional time and bandwidth; the datascience-notebook image has been shown
to grow by almost 3GB when adding manapages in this way. Enabling manpages in the base Ubuntu layer prevents this
container bloat. Just use previous Dockerfile with original ubuntu image as your base container:

Ubuntu 20.04 (focal) from 2020-04-23
https://github.com/docker-library/official-images/commit/
→˓4475094895093bcc29055409494cce1e11b52f94
ARG BASE_CONTAINER=ubuntu:focal-
→˓20200423@sha256:238e696992ba9913d24cfc3727034985abd136e08ee3067982401acdc30cbf3f

For Ubuntu 18.04 (bionic) and earlier, you may also require to workaround for a mandb bug, which was fixed in mandb
>= 2.8.6.1:

https://git.savannah.gnu.org/cgit/man-db.git/commit/?
→˓id=8197d7824f814c5d4b992b4c8730b5b0f7ec589a
https://launchpadlibrarian.net/435841763/man-db_2.8.5-2_2.8.6-1.diff.gz

RUN echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/man" >> /etc/manpath.config && \
echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/share/man" >> /etc/manpath.config &&␣

→˓\
mandb

Be sure to check the current base image in base-notebook before building.

3.5.13 JupyterHub

We also have contributed recipes for using JupyterHub.

Use JupyterHub’s dockerspawner

In most cases for use with DockerSpawner, given any image that already has a notebook stack set up, you would only
need to add:

1. install the jupyterhub-singleuser script (for the right Python)

2. change the command to launch the single-user server

Swapping out the FROM line in the jupyterhub/singleuser Dockerfile should be enough for most cases.

Credit: Justin Tyberg, quanghoc, and Min RK based on docker-stacks/issues/124 and docker-stacks/pull/185

3.5. Contributed Recipes 29

https://github.com/jtyberg
https://github.com/quanghoc
https://github.com/minrk
https://github.com/jupyter/docker-stacks/issues/124
https://github.com/jupyter/docker-stacks/pull/185

docker-stacks Documentation, Release latest

Containers with a specific version of JupyterHub

To use a specific version of JupyterHub, the version of jupyterhub in your image should match the version in the Hub
itself.

FROM jupyter/base-notebook:33add21fab64
RUN pip install --quiet --no-cache-dir jupyterhub==1.4.1 && \

fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Credit: MinRK

Ref: https://github.com/jupyter/docker-stacks/issues/177

3.5.14 Spark

A few suggestions have been made regarding using Docker Stacks with spark.

Using PySpark with AWS S3

Using Spark session for hadoop 2.7.3

import os
!ls /usr/local/spark/jars/hadoop* # to figure out what version of hadoop
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages "org.apache.hadoop:hadoop-aws:2.7.3"␣
→˓pyspark-shell'

import pyspark
myAccessKey = input()
mySecretKey = input()

spark = pyspark.sql.SparkSession.builder \
.master("local[*]") \
.config("spark.hadoop.fs.s3a.access.key", myAccessKey) \
.config("spark.hadoop.fs.s3a.secret.key", mySecretKey) \
.getOrCreate()

df = spark.read.parquet("s3://myBucket/myKey")

Using Spark context for hadoop 2.6.0

import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages com.amazonaws:aws-java-sdk:1.10.34,org.
→˓apache.hadoop:hadoop-aws:2.6.0 pyspark-shell'

import pyspark
sc = pyspark.SparkContext("local[*]")

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

hadoopConf = sc._jsc.hadoopConfiguration()
myAccessKey = input()

(continua na próxima página)

30 Capítulo 3. Índice

https://github.com/jupyter/docker-stacks/issues/423#issuecomment-322767742
https://github.com/jupyter/docker-stacks/issues/177

docker-stacks Documentation, Release latest

(continuação da página anterior)

mySecretKey = input()
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoopConf.set("fs.s3.awsAccessKeyId", myAccessKey)
hadoopConf.set("fs.s3.awsSecretAccessKey", mySecretKey)

df = sqlContext.read.parquet("s3://myBucket/myKey")

Ref: https://github.com/jupyter/docker-stacks/issues/127

Using Local Spark JARs

import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars /home/jovyan/spark-streaming-kafka-assembly_
→˓2.10-1.6.1.jar pyspark-shell'
import pyspark
from pyspark.streaming.kafka import KafkaUtils
from pyspark.streaming import StreamingContext
sc = pyspark.SparkContext()
ssc = StreamingContext(sc,1)
broker = "<my_broker_ip>"
directKafkaStream = KafkaUtils.createDirectStream(ssc, ["test1"], {"metadata.broker.list
→˓": broker})
directKafkaStream.pprint()
ssc.start()

Ref: https://github.com/jupyter/docker-stacks/issues/154

Using spark-packages.org

If you’d like to use packages from spark-packages.org, see https://gist.github.com/parente/c95fdaba5a9a066efaab for
an example of how to specify the package identifier in the environment before creating a SparkContext.

Ref: https://github.com/jupyter/docker-stacks/issues/43

Use jupyter/all-spark-notebooks with an existing Spark/YARN cluster

FROM jupyter/all-spark-notebook

Set env vars for pydoop
ENV HADOOP_HOME /usr/local/hadoop-2.7.3
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64
ENV HADOOP_CONF_HOME /usr/local/hadoop-2.7.3/etc/hadoop
ENV HADOOP_CONF_DIR /usr/local/hadoop-2.7.3/etc/hadoop

USER root
Add proper open-jdk-8 not just the jre, needed for pydoop
RUN echo 'deb https://cdn-fastly.deb.debian.org/debian jessie-backports main' > /etc/apt/
→˓sources.list.d/jessie-backports.list && \

apt-get update --yes && \
apt-get install --yes --no-install-recommends -t jessie-backports openjdk-8-jdk && \

(continua na próxima página)

3.5. Contributed Recipes 31

https://github.com/jupyter/docker-stacks/issues/127
https://github.com/jupyter/docker-stacks/issues/154
https://spark-packages.org/
https://gist.github.com/parente/c95fdaba5a9a066efaab
https://github.com/jupyter/docker-stacks/issues/43

docker-stacks Documentation, Release latest

(continuação da página anterior)

rm /etc/apt/sources.list.d/jessie-backports.list && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \

Add hadoop binaries
wget https://mirrors.ukfast.co.uk/sites/ftp.apache.org/hadoop/common/hadoop-2.7.3/

→˓hadoop-2.7.3.tar.gz && \
tar -xvf hadoop-2.7.3.tar.gz -C /usr/local && \
chown -R "${NB_USER}:users" /usr/local/hadoop-2.7.3 && \
rm -f hadoop-2.7.3.tar.gz && \

Install os dependencies required for pydoop, pyhive
apt-get update --yes && \
apt-get install --yes --no-install-recommends build-essential python-dev libsasl2-

→˓dev && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \

Remove the example hadoop configs and replace
with those for our cluster.
Alternatively this could be mounted as a volume

rm -f /usr/local/hadoop-2.7.3/etc/hadoop/*

Download this from ambari / cloudera manager and copy here
COPY example-hadoop-conf/ /usr/local/hadoop-2.7.3/etc/hadoop/

Spark-Submit doesn't work unless I set the following
RUN echo "spark.driver.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/
→˓conf/spark-defaults.conf && \

echo "spark.yarn.am.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/
→˓conf/spark-defaults.conf && \

echo "spark.master=yarn" >> /usr/local/spark/conf/spark-defaults.conf && \
echo "spark.hadoop.yarn.timeline-service.enabled=false" >> /usr/local/spark/conf/

→˓spark-defaults.conf && \
chown -R "${NB_USER}:users" /usr/local/spark/conf/spark-defaults.conf && \
Create an alternative HADOOP_CONF_HOME so we can mount as a volume and repoint
using ENV var if needed
mkdir -p /etc/hadoop/conf/ && \
chown "${NB_USER}":users /etc/hadoop/conf/

USER ${NB_UID}

Install useful jupyter extensions and python libraries like :
- Dashboards
- PyDoop
- PyHive
RUN pip install --quiet --no-cache-dir jupyter_dashboards faker && \

jupyter dashboards quick-setup --sys-prefix && \
pip2 install --quiet --no-cache-dir pyhive pydoop thrift sasl thrift_sasl faker && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

USER root
Ensure we overwrite the kernel config so that toree connects to cluster
RUN jupyter toree install --sys-prefix --spark_opts="\

--master yarn
--deploy-mode client

(continua na próxima página)

32 Capítulo 3. Índice

docker-stacks Documentation, Release latest

(continuação da página anterior)

--driver-memory 512m
--executor-memory 512m
--executor-cores 1
--driver-java-options
-Dhdp.version=2.5.3.0-37
--conf spark.hadoop.yarn.timeline-service.enabled=false

"
USER ${NB_UID}

Credit: britishbadger from docker-stacks/issues/369

3.5.15 Run Jupyter Notebook/Lab inside an already secured environment (i.e., with
no token)

(Adapted from issue 728)

The default security is very good. There are use cases, encouraged by containers, where the jupyter container and the
system it runs within, lie inside the security boundary. In these use cases it is convenient to launch the server without
a password or token. In this case, you should use the start.sh script to launch the server with no token:

For jupyterlab:

docker run jupyter/base-notebook:33add21fab64 start.sh jupyter lab --LabApp.token=''

For jupyter classic:

docker run jupyter/base-notebook:33add21fab64 start.sh jupyter notebook --NotebookApp.
→˓token=''

3.5.16 Enable nbextension spellchecker for markdown (or any other nbextension)

NB: this works for classic notebooks only

Update with your base image of choice
FROM jupyter/minimal-notebook:latest

USER ${NB_UID}

RUN pip install --quiet --no-cache-dir jupyter_contrib_nbextensions && \
jupyter contrib nbextension install --user && \
can modify or enable additional extensions here
jupyter nbextension enable spellchecker/main --user && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"

Ref: https://github.com/jupyter/docker-stacks/issues/675

3.5. Contributed Recipes 33

https://github.com/britishbadger
https://github.com/jupyter/docker-stacks/issues/369
https://github.com/jupyter/docker-stacks/issues/728
https://github.com/jupyter/docker-stacks/issues/675

docker-stacks Documentation, Release latest

3.5.17 Enable Delta Lake in Spark notebooks

Please note that the Delta Lake packages are only available for Spark version > 3.0. By adding the properties to
spark-defaults.conf, the user no longer needs to enable Delta support in each notebook.

FROM jupyter/pyspark-notebook:latest

ARG DELTA_CORE_VERSION="1.0.0"
RUN pip install --quiet --no-cache-dir delta-spark==${DELTA_CORE_VERSION} && \

fix-permissions "${HOME}" && \
fix-permissions "${CONDA_DIR}"

USER root

RUN echo 'spark.sql.extensions io.delta.sql.DeltaSparkSessionExtension' >> "${SPARK_HOME}
→˓/conf/spark-defaults.conf" && \

echo 'spark.sql.catalog.spark_catalog org.apache.spark.sql.delta.catalog.DeltaCatalog
→˓' >> "${SPARK_HOME}/conf/spark-defaults.conf"

USER ${NB_UID}

Trigger download of delta lake files
RUN echo "from pyspark.sql import SparkSession" > /tmp/init-delta.py && \

echo "from delta import *" >> /tmp/init-delta.py && \
echo "spark = configure_spark_with_delta_pip(SparkSession.builder).getOrCreate()" >>␣

→˓/tmp/init-delta.py && \
python /tmp/init-delta.py && \
rm /tmp/init-delta.py

3.5.18 Add Custom Font in Scipy notebook

The example below is a Dockerfile to load Source Han Sans with normal weight which is usually used for web.

FROM jupyter/scipy-notebook:latest

RUN PYV=$(ls "${CONDA_DIR}/lib" | grep ^python) && \
MPL_DATA="${CONDA_DIR}/lib/${PYV}/site-packages/matplotlib/mpl-data" && \
wget --quiet -P "${MPL_DATA}/fonts/ttf/" https://mirrors.cloud.tencent.com/adobe-

→˓fonts/source-han-sans/SubsetOTF/CN/SourceHanSansCN-Normal.otf && \
sed -i 's/#font.family/font.family/g' "${MPL_DATA}/matplotlibrc" && \
sed -i 's/#font.sans-serif:/font.sans-serif: Source Han Sans CN,/g' "${MPL_DATA}/

→˓matplotlibrc" && \
sed -i 's/#axes.unicode_minus: True/axes.unicode_minus: False/g' "${MPL_DATA}/

→˓matplotlibrc" && \
rm -rf "/home/${NB_USER}/.cache/matplotlib" && \
python -c 'import matplotlib.font_manager;print("font loaded: ",("Source Han Sans CN

→˓" in [f.name for f in matplotlib.font_manager.fontManager.ttflist]))'

34 Capítulo 3. Índice

https://delta.io/

docker-stacks Documentation, Release latest

3.6 Project Issues

We appreciate your taking the time to report an issue you encountered using the Jupyter Docker Stacks. Please review
the following guidelines when reporting your problem.

• If you believe you’ve found a security vulnerability in any of the Jupyter projects included in Jupyter Docker
Stacks images, please report it to security@ipython.org, not in the issue trackers on GitHub. If you prefer to
encrypt your security reports, you can use this PGP public key.

• If you think your problem is unique to the Jupyter Docker Stacks images, please search the jupyter/docker-stacks
issue tracker to see if someone else has already reported the same problem. If not, please open a new issue and
provide all of the information requested in the issue template.

• If the issue you’re seeing is with one of the open source libraries included in the Docker images and is reproducible
outside the images, please file a bug with the appropriate open source project.

• If you have a general question about how to use the Jupyter Docker Stacks in your environment, in conjunction
with other tools, with customizations, and so on, please post your question on the Jupyter Discourse site.

3.7 Package Updates

We actively seek pull requests which update packages already included in the project Dockerfiles. This is a great way
for first-time contributors to participate in developing the Jupyter Docker Stacks.

Please follow the process below to update a package version:

1. Locate the Dockerfile containing the library you wish to update (e.g., base-notebook/Dockerfile, scipy-
notebook/Dockerfile)

2. Adjust the version number for the package. We prefer to pin the major and minor version number of packages so
as to minimize rebuild side-effects when users submit pull requests (PRs). For example, you’ll find the Jupyter
Notebook package, notebook, installed using conda with notebook=5.4.*.

3. Please build the image locally before submitting a pull request. Building the image locally shortens the debugging
cycle by taking some load off GitHub Actions, which graciously provide free build services for open source
projects like this one. If you use make, call:

make build/somestack-notebook

4. Submit a pull request (PR) with your changes.

5. Watch for GitHub to report a build success or failure for your PR on GitHub.

6. Discuss changes with the maintainers and address any build issues. Version conflicts are the most common
problem. You may need to upgrade additional packages to fix build failures.

3.7.1 Notes

In order to help identifying packages that can be updated you can use the following helper tool. It will list all the
packages installed in the Dockerfile that can be updated – dependencies are filtered to focus only on requested
packages.

$ make check-outdated/base-notebook

INFO test_outdated:test_outdated.py:80 3/8 (38%) packages could be updated
(continua na próxima página)

3.6. Project Issues 35

mailto:security@ipython.org
https://github.com/jupyter/jupyter.github.io/blob/master/assets/ipython_security.asc
https://github.com/jupyter/docker-stacks/issues
https://github.com/jupyter/docker-stacks/issues
https://github.com/jupyter/docker-stacks/issues/new
https://discourse.jupyter.org
https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/scipy-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/scipy-notebook/Dockerfile
https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request

docker-stacks Documentation, Release latest

(continuação da página anterior)

INFO test_outdated:test_outdated.py:82
Package Current Newest
---------- --------- --------
conda 4.7.12 4.8.2
jupyterlab 1.2.5 2.0.0
python 3.7.4 3.8.2

3.8 New Recipes

We welcome contributions of recipes, short examples of using, configuring, or extending the Docker Stacks, for inclu-
sion in the documentation site. Follow the process below to add a new recipe:

1. Open the docs/using/recipes.md source file.

2. Add a second-level Markdown heading naming your recipe at the bottom of the file (e.g., ## Add the RISE
extension)

3. Write the body of your recipe under the heading, including whatever command line, Dockerfile, links, etc. you
need.

4. Submit a pull request (PR) with your changes. Maintainers will respond and work with you to address any
formatting or content issues.

3.9 Doc Translations

We are delighted when members of the Jupyter community want to help translate these documentation pages to other
languages. If you’re interested, please visit links below below to join our team on Transifex and to start creating,
reviewing, and updating translations of the Jupyter Docker Stacks documentation.

1. Follow the steps documented on the Getting Started as a Translator page.

2. Look for jupyter-docker-stacks when prompted to choose a translation team. Alternatively, visit https://www.
transifex.com/project-jupyter/jupyter-docker-stacks-1 after creating your account and request to join the project.

3. See Translating with the Web Editor in the Transifex documentation.

3.10 Lint

In order to enforce some rules linters are used in this project. Linters can be run either during the development phase
(by the developer) and during integration phase (by GitHub Actions). To integrate and enforce this process in the
project lifecycle we are using git hooks through pre-commit.

36 Capítulo 3. Índice

https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request
https://transifex.com
https://docs.transifex.com/getting-started-1/translators
https://www.transifex.com/project-jupyter/jupyter-docker-stacks-1
https://www.transifex.com/project-jupyter/jupyter-docker-stacks-1
https://docs.transifex.com/translation/translating-with-the-web-editor
https://pre-commit.com/

docker-stacks Documentation, Release latest

3.10.1 Pre-commit hook

Pre-commit hook installation

pre-commit is a Python package that needs to be installed. This can be achieved by using the generic task used to install
all Python development dependencies.

Install all development dependencies for the project
$ make dev-env
It can also be installed directly
$ pip install pre-commit

Then the git hooks scripts configured for the project in .pre-commit-config.yaml need to be installed in the local
git repository.

make pre-commit-install

Run

Now pre-commit (and so configured hooks) will run automatically on git commit on each changed file. However it
is also possible to trigger it against all files.

• Note: Hadolint pre-commit uses docker to run, so docker should be running while running this command.

make pre-commit-all

3.10.2 Image Lint

To comply with Docker best practices, we are using the Hadolint tool to analyse each Dockerfile .

Ignoring Rules

Sometimes it is necessary to ignore some rules. The following rules are ignored by default for all images in the .
hadolint.yaml file.

• DL3006: We use a specific policy to manage image tags.

– base-notebook FROM clause is fixed but based on an argument (ARG).

– Building downstream images from (FROM) the latest is done on purpose.

• DL3008: System packages are always updated (apt-get) to the latest version.

For other rules, the preferred way to do it is to flag ignored rules in the Dockerfile.

It is also possible to ignore rules by using a special comment directly above the Dockerfile instruction you
want to make an exception for. Ignore rule comments look like # hadolint ignore=DL3001,SC1081.
For example:

FROM ubuntu

hadolint ignore=DL3003,SC1035
RUN cd /tmp && echo "hello!"

3.10. Lint 37

https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint#rules
https://github.com/hadolint/hadolint/wiki/DL3006
https://github.com/hadolint/hadolint/wiki/DL3008

docker-stacks Documentation, Release latest

3.11 Image Tests

We greatly appreciate pull requests that extend the automated tests that vet the basic functionality of the Docker images.

3.11.1 How the Tests Work

GitHub executes make build-test-all against pull requests submitted to the jupyter/docker-stacks repository.
This make command builds every docker image. After building each image, the make command executes pytest to
run both image-specific tests like those in base-notebook/test/ and common tests defined in test/. Both kinds of tests
make use of global pytest fixtures defined in the conftest.py file at the root of the projects.

3.11.2 Contributing New Tests

Please follow the process below to add new tests:

1. If the test should run against every image built, add your test code to one of the modules in test/ or create a new
module.

2. If your test should run against a single image, add your test code to one of the modules in some-notebook/test/
or create a new module.

3. Build one or more images you intend to test and run the tests locally. If you use make, call:

make build/somestack-notebook
make test/somestack-notebook

4. Submit a pull request (PR) with your changes.

5. Watch for GitHub to report a build success or failure for your PR on GitHub.

6. Discuss changes with the maintainers and address any issues running the tests on GitHub.

3.12 New Features

Thank you for contributing to the Jupyter Docker Stacks! We review pull requests of new features (e.g., new packages,
new scripts, new flags) to balance the value of the images to the Jupyter community with the cost of maintaining the
images over time.

3.12.1 Suggesting a New Feature

Please follow the process below to suggest a new feature for inclusion in one of the core stacks:

1. Open a GitHub issue describing the feature you’d like to contribute.

2. Discuss with the maintainers whether the addition makes sense in one of the core stacks, as a recipe in the
documentation, as a community stack, or as something else entirely.

38 Capítulo 3. Índice

https://github.com/jupyter/docker-stacks/tree/master/base-notebook/test
https://github.com/jupyter/docker-stacks/tree/master/test
https://docs.pytest.org/en/latest/reference/fixtures.html
https://github.com/jupyter/docker-stacks/blob/master/conftest.py
https://github.com/jupyter/docker-stacks/tree/master/test
https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request
https://github.com/jupyter/docker-stacks/issues
../using/selecting.html#core-stacks

docker-stacks Documentation, Release latest

3.12.2 Selection Criteria

Roughly speaking, we evaluate new features based on the following criteria:

• Usefulness to Jupyter users: Is the feature generally applicable across domains? Does it work with Jupyter
Notebook, JupyterLab, JupyterHub, etc.?

• Fit with the image purpose: Does the feature match the theme of the stack in which it will be added? Would it
fit better in a new, community stack?

• Complexity of build / runtime configuration: How many lines of code does the feature require in one of the
Dockerfiles or startup scripts? Does it require new scripts entirely? Do users need to adjust how they use the
images?

• Impact on image metrics: How many bytes does the feature and its dependencies add to the image(s)? How
many minutes do they add to the build time?

• Ability to support the addition: Can existing maintainers answer user questions and address future build issues?
Are the contributors interested in helping with long-term maintenance? Can we write tests to ensure the feature
continues to work over time?

3.12.3 Submitting a Pull Request

If there’s agreement that the feature belongs in one or more of the core stacks:

1. Implement the feature in a local clone of the jupyter/docker-stacks project.

2. Please build the image locally before submitting a pull request Building the image locally shortens the debugging
cycle by taking some load off GitHub Actions, which graciously provide free build services for open source
projects like this one. If you use make, call:

make build/somestack-notebook

3. Submit a pull request(PR) with your changes.

4. Watch for GitHub to report a build success or failure for your PR on GitHub.

5. Discuss changes with the maintainers and address any build issues.

3.13 Community Stacks

We love to see the community create and share new Jupyter Docker images. We’ve put together a cookiecutter project
and the documentation below to help you get started defining, building, and sharing your Jupyter environments in
Docker. Following these steps will:

1. Setup a project on GitHub containing a Dockerfile based on either the jupyter/base-notebook or jupyter/
minimal-notebook image.

2. Configure GitHub Actions to build and test your image when users submit pull requests to your repository.

3. Configure Docker Hub to build and host your images for others to use.

4. Update the list of community stacks in this documentation to include your image.

This approach mirrors how we build and share the core stack images. Feel free to follow it or pave your own path using
alternative services and build tools.

3.13. Community Stacks 39

https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request
https://github.com/jupyter/cookiecutter-docker-stacks
../using/selecting.html#community-stacks

docker-stacks Documentation, Release latest

3.13.1 Creating a Project

First, install cookiecutter using pip or conda:

pip install cookiecutter # or mamba install cookiecutter

Run the cookiecutter command pointing to the jupyter/cookiecutter-docker-stacks project on GitHub.

cookiecutter https://github.com/jupyter/cookiecutter-docker-stacks.git

Enter a name for your new stack image. This will serve as both the git repository name and the part of the Docker
image name after the slash.

stack_name [my-jupyter-stack]:

Enter the user or organization name under which this stack will reside on Docker Hub. You must have access to manage
this Docker Hub organization to push images here and set up automated builds.

stack_org [my-project]:

Select an image from the jupyter/docker-stacks project that will serve as the base for your new image.

stack_base_image [jupyter/base-notebook]:

Enter a longer description of the stack for your README.

stack_description [my-jupyter-stack is a community maintained Jupyter Docker Stack␣
→˓image]:

Initialize your project as a Git repository and push it to GitHub.

cd <stack_name you chose>

git init
git add .
git commit -m 'Seed repo'
git remote add origin <url from github>
git push -u origin master

3.13.2 Configuring GitHub actions

The cookiecutter template comes with a .github/workflows/docker.yml file, which allows you to use GitHub
actions to build your Docker image whenever you or someone else submits a pull request.

1. By default the .github/workflows/docker.yaml file has the following triggers configuration:

on:
pull_request:
paths-ignore:
- "*.md"

push:
branches:
- main
- master

(continua na próxima página)

40 Capítulo 3. Índice

https://github.com/cookiecutter/cookiecutter
https://github.com/jupyter/cookiecutter-docker-stacks

docker-stacks Documentation, Release latest

(continuação da página anterior)

paths-ignore:
- "*.md"

This will trigger the CI pipeline whenever you push to your main or master branch and when any Pull Requests
are made to your repository. For more details on this configuration, visit the GitHub actions documentation on
triggers.

2. Commit your changes and push to GitHub.

3. Head back to your repository and click on the Actions tab.
From there, you can click on the workflows on the left-hand side of the screen.

4. In the next screen, you will be able to see information about the workflow run and duration. If
you click again on the button with the workflow name, you will see the logs for the workflow steps.

3.13.3 Configuring Docker Hub

Now, configure Docker Hub to build your stack image and push it to Docker Hub repository whenever you merge a
GitHub pull request to the master branch of your project.

1. Visit https://hub.docker.com/ and log in.

2. Select the account or organization matching the one you entered when prompted with stack_org by the cooki-

3.13. Community Stacks 41

https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://hub.docker.com/

docker-stacks Documentation, Release latest

ecutter.

3. Scroll to the bottom of the page and click Create repository.

4. Enter the name of the image matching the one you entered when prompted with stack_name by the cookiecutter.

42 Capítulo 3. Índice

docker-stacks Documentation, Release latest

5. Enter a description for your image.

6. Click GitHub under the Build Settings and follow the prompts to connect your account if it is not already
connected.

7. Select the GitHub organization and repository containing your image definition from the dropdowns.

3.13. Community Stacks 43

docker-stacks Documentation, Release latest

8. Click the Create and Build button.

9. Click on your avatar on the top-right corner and select Account settings.

44 Capítulo 3. Índice

docker-stacks Documentation, Release latest

10. Click on Security and then click on the New Access Token button.

11. Enter a meaningful name for your token and click on Create

3.13. Community Stacks 45

docker-stacks Documentation, Release latest

12. Copy the personal access token displayed on the next screen. Note that you will not be able to see it again after
you close the pop-up window.

13. Head back to your GitHub repository and click on the Settings tab.

14. Click on the Secrets section and then on the New repository secret button on the top right corner (see image
above).

15. Create a DOCKERHUB_TOKEN secret and paste the Personal Access Token from DockerHub in the value fi-

eld.

16. Repeat the above step but creating a DOCKERHUB_USERNAME and repla-
cing the value field with your DockerHub username. Once you have comple-
ted these steps, your repository secrets section should look something like this:

46 Capítulo 3. Índice

docker-stacks Documentation, Release latest

3.13.4 Defining Your Image

Make edits to the Dockerfile in your project to add third-party libraries and configure Jupyter applications. Refer to the
Dockerfiles for the core stacks (e.g., jupyter/datascience-notebook) to get a feel for what’s possible and best practices.

Submit pull requests to your project repository on GitHub. Ensure your image builds correctly on GitHub actions before
merging to master or main. Refer to Docker Hub to build your master or main branch that you can docker pull.

3.13.5 Sharing Your Image

Finally, if you’d like to add a link to your project to this documentation site, please do the following:

1. Clone the jupyter/docker-stacks GitHub repository.

2. Open the docs/using/selecting.md source file and locate the Community Stacks section.

3. Add a bullet with a link to your project and a short description of what your Docker image contains.

4. Submit a pull request(PR) with your changes. Maintainers will respond and work with you to address any for-
matting or content issues.

3.14 Maintainer Playbook

3.14.1 Merging Pull Requests

To build new images and publish them to the Docker Hub registry, do the following:

1. Make sure GitHub Actions status checks pass for the PR.

2. Merge the PR.

3. Monitor the merge commit GitHub Actions status. Note: we think, GitHub Actions are quite reliable, so please,
investigate, if some error occurs. The process of building docker images in PRs is exactly the same after merging
to master, except there is an additional push step.

4. Try to avoid merging another PR to master until all pending builds complete. This way you will know which
commit might have broken the build and also have correct tags for moving tags (like python version).

3.14. Maintainer Playbook 47

https://github.com/jupyter/docker-stacks/blob/master/datascience-notebook/Dockerfile
https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request
https://github.com/jupyter/docker-stacks
https://github.com/PointCloudLibrary/pcl/wiki/A-step-by-step-guide-on-preparing-and-submitting-a-pull-request

docker-stacks Documentation, Release latest

3.14.2 Updating the Ubuntu Base Image

When there’s a security fix in the Ubuntu base image or after some time passes, it’s a good idea to update the pinned
SHA in the jupyter/base-notebook Dockerfile. Submit it as a regular PR and go through the build process. Expect the
build to take a while to complete: every image layer will rebuild.

3.14.3 Adding a New Core Image to Docker Hub

When there’s a new stack definition, do the following before merging the PR with the new stack:

1. Ensure the PR includes an update to the stack overview diagram in the documentation. The image links to the
blockdiag source used to create it.

2. Ensure the PR updates the Makefile which is used to build the stacks in order on GitHub Actions.

3. Ensure necessary tags / manifests are added for the new image in the tagging folder.

4. Create a new repository in the jupyter org on Docker Hub named after the stack folder in the git repo.

5. Grant the stacks team permission to write to the repo.

3.14.4 Adding a New Maintainer Account

1. Visit https://hub.docker.com/app/jupyter/team/stacks/users

2. Add the maintainer’s Docker Hub username.

3. Visit https://github.com/orgs/jupyter/teams/docker-image-maintainers/members

4. Add the maintainer’s GitHub username.

3.14.5 Pushing a Build Manually

If automated build in Github Actions has got you down, do the following to push a build manually:

1. Clone this repository.

2. Check out the git SHA you want to build and publish.

3. docker login with your Docker Hub credentials.

4. Run make push-all.

3.14.6 Enabling a New Doc Language Translation

First enable translation on Transifex:

1. Visit https://www.transifex.com/project-jupyter/jupyter-docker-stacks-1/languages/.

2. Click Edit Languages in the top right.

3. Select the language from the dropdown.

4. Click Apply.

Then setup a subproject on ReadTheDocs for the language:

1. Visit https://readthedocs.org/dashboard/import/manual/.

2. Enter jupyter-docker-stacks-language_abbreviation for the project name.

48 Capítulo 3. Índice

https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/docs/using/selecting.md#image-relationships
http://interactive.blockdiag.com/
https://github.com/jupyter/docker-stacks/blob/master/Makefile
https://github.com/jupyter/docker-stacks/blob/master/tagging
https://hub.docker.com/app/jupyter/team/stacks/users
https://github.com/orgs/jupyter/teams/docker-image-maintainers/members
https://www.transifex.com/project-jupyter/jupyter-docker-stacks-1/languages/
https://readthedocs.org/dashboard/import/manual/

docker-stacks Documentation, Release latest

3. Enter https://github.com/jupyter/docker-stacks for the URL.

4. Check Edit advanced project options.

5. Click Next.

6. Select the Language from the dropdown on the next screen.

7. Click Finish.

Finally link the new language subproject to the top level doc project:

1. Visit https://readthedocs.org/dashboard/jupyter-docker-stacks/translations/.

2. Select the subproject you created from the Project dropdown.

3. Click Add.

3.14. Maintainer Playbook 49

https://github.com/jupyter/docker-stacks
https://readthedocs.org/dashboard/jupyter-docker-stacks/translations/

	Guia rápido
	CPU Architectures
	Caveats for arm64 images

	Índice
	Selecting an Image
	Core Stacks
	jupyter/base-notebook
	jupyter/minimal-notebook
	jupyter/r-notebook
	jupyter/scipy-notebook
	jupyter/tensorflow-notebook
	jupyter/datascience-notebook
	jupyter/pyspark-notebook
	jupyter/all-spark-notebook
	Image Relationships
	Builds
	Versioning via image tags

	Community Stacks

	Running a Container
	Using the Docker CLI
	Using Binder
	Using JupyterHub
	Using Other Tools and Services

	Common Features
	Notebook Options
	Docker Options
	Startup Hooks
	SSL Certificates
	Alternative Commands
	start.sh
	Others

	Conda Environments
	Using alternative channels

	Image Specifics
	Apache Spark™
	Specific Docker Image Options
	IPython low-level output capture and forward

	Build an Image with a Different Version of Spark
	Usage Examples
	Using Spark Local Mode
	Local Mode in Python
	Local Mode in R
	Local Mode in Scala

	Connecting to a Spark Cluster in Standalone Mode
	Standalone Mode in Python
	Standalone Mode in R
	Standalone Mode in Scala

	Define Spark Dependencies

	Tensorflow
	Single Machine Mode
	Distributed Mode

	Contributed Recipes
	Using sudo within a container
	Using mamba install or pip install in a Child Docker image
	Add a Python 2.x environment
	Add a Python 3.x environment
	Run JupyterLab
	Dask JupyterLab Extension
	Let’s Encrypt a Notebook server
	Slideshows with Jupyter and RISE
	xgboost
	Running behind a nginx proxy
	Host volume mounts and notebook errors
	Manpage installation
	JupyterHub
	Use JupyterHub’s dockerspawner
	Containers with a specific version of JupyterHub

	Spark
	Using PySpark with AWS S3
	Using Local Spark JARs
	Using spark-packages.org
	Use jupyter/all-spark-notebooks with an existing Spark/YARN cluster

	Run Jupyter Notebook/Lab inside an already secured environment (i.e., with no token)
	Enable nbextension spellchecker for markdown (or any other nbextension)
	Enable Delta Lake in Spark notebooks
	Add Custom Font in Scipy notebook

	Project Issues
	Package Updates
	Notes

	New Recipes
	Doc Translations
	Lint
	Pre-commit hook
	Pre-commit hook installation
	Run

	Image Lint
	Ignoring Rules

	Image Tests
	How the Tests Work
	Contributing New Tests

	New Features
	Suggesting a New Feature
	Selection Criteria
	Submitting a Pull Request

	Community Stacks
	Creating a Project
	Configuring GitHub actions
	Configuring Docker Hub
	Defining Your Image
	Sharing Your Image

	Maintainer Playbook
	Merging Pull Requests
	Updating the Ubuntu Base Image
	Adding a New Core Image to Docker Hub
	Adding a New Maintainer Account
	Pushing a Build Manually
	Enabling a New Doc Language Translation

